
Products A-Z

Application Areas

Trends

Technologies

Videos

E-Learning

Training

Documents

Events Overview

Calendar

Webinars

Reviews

Support

KnowledgeBase

Downloads

Vector Customer Portal

Support Request

Vector as employer

Current Jobs

Working at Vector

About Vector

Feedback

Get Info

Contacts

© 2010 - 2020 Vector Informatik GmbH Sitemap Imprint Privacy Policy Cookie Settings

5 Basic Building Blocks for Engineering
High Quality Software using Vector Tools

Experience has taught users to avoid the latest versions of software applications until the

inevitable maintenance releases, and patches have been released. Even large enterprises are not

immune to buggy launches — we just have to look at the upgrade cycle of software in mobile

phones to see a major release followed by several quick "fix" updates. While everyone is aware of

the software quality gap that exists between the initial release and the stable release,

unfortunately not much progress is being made toward solving the problem.

This technical article discusses 5 actionable ideas to help development groups close the quality gap.

1. Test Coverage Use Code Coverage Analysis

Code coverage analysis reports on the portions of the application source code that have been

executed by a set of test cases. Analyzing code coverage is the best way to measure the

completeness of your test activities. Without measuring code coverage you are “testing in the

dark".

Figure 1 – Analysis of code coverage to measure test completeness

It is important to remember that while achieving “100 % code coverage” does not prove that an

application is perfect, it is a critical component of engineering high quality software. In fact, all of

the standards associated with safety critical software development mandate code coverage as

part of the development process.

Aerospace uses DO-178B/C,

automotive has ISO 26262,

IEC 61508 for industrial controls,

FDA and IEC 62304 standards for medical devices and the

CENELEC standard applies for rail applications.

Learn more about code coverage by reading this white paper:

2. Unit Tests

Figure 2 – 100 % code coverage by closing the
coverage gaps using unit tests

Improve Test Coverage with Unit Tests

Once your measuring coverage, it’s likely that

existing tests provide significantly less than 100

% coverage, this coverage gap results from

testers focusing on nominal use cases and not

on error cases or boundary conditions.

The obvious way to close the coverage gap is to

add additional functional tests, but it is likely

that 20-30 % of the application code is really

difficult to test with functional tests in a

production environment, because it is difficult

to inject the faults required to trigger the error handling.

Critical bugs that occur in the field are the result of an odd combination of stimulus to the

application that was never anticipated. Enter the fabled Heisenbug, a bug that disappears or alters

its behavior when one attempts to probe or isolate it. For C programmers, these are thought to be

the result of uninitialized variables, and are a source of frustration because simply observing the

code appears to be altering it [1] .

This is where using low-level unit testing is critical. Unit tests allow fault injection i.e. the testing of

error handling in ways that are impossible in a production environment.

3. Test Infrastructure

Figure 3 – The Test Pyramid includes different types of
tests

Make Tests Easy to Run, and Results Easy to
Understand

In theory, it sounds like a simple plan: make

your tests easy to run and the test results easy

to understand. In practice, however, this can be

a challenge. Historically, different flavors of

tests are built and maintained by different

engineers, often using different tools:

Unit tests are used to prove correctness of

the low-level building blocks of an application

Service & API layer tests are built to prove

the correct functioning of complete sub-

systems

Human-machine interface tests (HMI) / functional tests are built to prove correctness from an

end-user point of view

When tests are partitioned this way, each flavor of tests is owned and maintained by a different

group of engineers rather than being shared across all members of the development team. In fact,

in most organizations, it is probably impossible for a QA engineer to run a developer test or a

developer to run a system test.

In order to improve quality, it should be possible for any member of the development team to run

any test at any time on any version of the application.

The key to enabling this workflow is a common test collaboration platform, which captures all tests,

along with their preconditions and expected results. Engineers should be able to run a single test, or

all tests with the “click of a button”. In addition, it is essential that engineers are able to quickly

debug failing tests.

Additional information can be found in the following document:

4. Test Efficiency Implement Automated, Parallel, and Change-Based
Testing

Once testing completeness is improved by code coverage analysis, and tests are deployed across

the entire organization, the next step is to ensure that tests run quickly. One of the reasons tests

are partitioned between multiple groups is that a complete system test might take hours or days

to run. Obviously, if you ask a developer who has changed one line of code to run 10 hours of

testing, you’ll get some pushback. So how can we decrease test time, while still ensuring testing

completeness?

The key is to build a testing infrastructure which is scalable, using parallel and change-based

testing. Individual tests must be atomic, small, and fast. Too often test suites become tightly

coupled over time with new tests simply being inserted into existing tests. This makes tests fragile

and test maintenance time consuming. A simple thought to keep in mind when designing tests is,

each test should define its own preconditions not rely on the output of other tests.

Beyond the benefits of test maintenance, re-architecting your tests to be atomic enables:

Change-based testing, running only those tests affected by each software change

Parallel test execution, running hundreds of individual tests simultaneously

While every organization has developed a software build system that allows for unattended

incremental application building, most have not implemented incremental testing. Too often,

testing is performed periodically rather than constantly and incrementally with complete

automation. Change-based testing (CBT) analyses each set of changes to the code base, and

intelligently selects the sub-set of all tests affected by those changes. This results in complete

testing in a fraction of the time of a full test run. In addition, change-based testing provides an

accessible means for implementing a rigorous continuous integration (CI) development process;

during the check-in phase of CI, CBT provides an efficient means to verify the build and detect

problems early.

 

Figure 4 – Regression test of the test cases impacted by the code change

To improve speed even further, consider parallel testing. By integrating your test platform with a

continuous integration server, and virtualized test machines, you can reduce total test times from

hours to minutes, or minutes to seconds.

5. Refactoring

Figure 5 – Code refactoring approach

Refactor Code Bases to Improve Maintainability

Code refactoring is the process of restructuring

application components without changing its

external behavior (API).

Without refactoring, application code becomes

overly complicated, and hard to maintain over

time. As new features and bug fixes are bolted

onto existing functionality, the original elegant

design is often a casualty.

Code refactoring improves code readability and

reduces complexity, hence maintenance cost. Code refactoring, executed well, offers the additional

promise of resolving hidden, dormant, or undiscovered computer bugs or vulnerabilities in the

system by simplifying the underlying logic and eliminating unnecessary levels of complexity.

Every application has fragile and buggy sections which developers are hesitant to change for fear

of breaking existing functionality. The only way to confidently refactor these fragile modules is to

ensure that you are building tests to formalize the expected behavior.

Conclusion

Over the last thirty years, there have been a steady flow of tools, design patterns, and development

paradigm shifts. Many of these have promised improved quality without increased time or effort. It

should be clear to everyone in the software industry by now, that there is not, and will never be, a

silver bullet that provides improved quality at no “cost”. The only sensible way to improve software

quality is to improve the effectiveness of software testing.

--------------------

References:

[1] Hristov, Ivan. Chasing Heisenbugs from an AKKA actor integration test with awaitility.

September 16, 2012. honeysoft.wordpress.com/category/heisenbug/

 Using Code Coverage to Improve the Reliability of Embedded Software

 Building a Flexible and Automated Testing Infrastructure

 Back to Testing Trends

Products Know-how Events Support &
Downloads

Career

Company

5. Refactoring

Your region/language settings differ from the requested site. Do you want to change to suggested region/language?

Switch to International/English Choose other region/language

Contact International | English

Products Know-how Events Support & Downloads Career Company

Home Products Application Areas Testing Testing Trends 5 Basic Building Blocks

We use cookies to ensure optimal usability of our
website. By continuing to use the website, you
agree to the use of cookies. In the cookie settings
you can specify which types of cookies are saved
when using this website.
Further information can also be found in our
privacy policy.

Accept All Cookies

Cookie Settings

https://www.vector.com/int/en/products/products-a-z/
https://www.vector.com/int/en/products/application-areas/
https://www.vector.com/int/en/know-how/trends/
https://www.vector.com/int/en/know-how/technologies/
https://www.vector.com/int/en/search/?tx_solr%5Bfilter%5D%5B0%5D=filetype%3Ayoutube&tx_solr%5Bsort%5D=datetime+desc&tx_solr[resultsPerPage]=50
https://elearning.vector.com/?lang=en
https://www.vector.com/int/en/know-how/training/
https://www.vector.com/int/en/know-how/documents/
https://www.vector.com/int/en/events/overview/
https://www.vector.com/int/en/events/calendar/
https://www.vector.com/int/en/events/webinars/
https://www.vector.com/int/en/events/reviews/
https://www.vector.com/int/en/support-downloads/support/
https://www.vector.com/int/en/support-downloads/knowledgebase/
https://www.vector.com/int/en/search/?tx_solr%5Bfilter%5D%5B0%5D=contentType%3Atx_solr_file&tx_solr%5Bsort%5D=datetime+desc&tx_solr%5BresultsPerPage%5D=10
https://portal.vector.com/
https://www.vector.com/int/en/support-downloads/support/#c54331
https://jobs.vector.com/hr_index_en.html
https://jobs.vector.com/hr_jobsuche_en.html
https://jobs.vector.com/hr_arbeiten_bei_vector_en.html
https://www.vector.com/int/en/company/about-vector/
https://www.vector.com/int/en/company/feedback/
https://www.vector.com/int/en/company/get-info/
https://www.vector.com/int/en/company/contacts/
https://www.vector.com/int/en/sitemap/
https://www.vector.com/int/en/imprint/
https://www.vector.com/int/en/company/get-info/privacy-policy/
https://www.vector.com/int/en/sitemap/
https://www.vector.com/int/en/imprint/
https://www.vector.com/int/en/company/get-info/privacy-policy/
https://www.vector.com/int/en/products/products-a-z/software/vectorcast/#c111538
https://www.vector.com/int/en/products/products-a-z/software/vectorcast/#c113149
https://www.vector.com/int/en/products/products-a-z/software/vectorcast/#c113155
https://www.vector.com/int/en/products/products-a-z/software/vectorcast/#c113158
https://www.vector.com/int/en/products/products-a-z/software/vectorcast/#c113158
https://www.vector.com/int/en/products/products-a-z/software/vectorcast/#c113173
https://honeysoft.wordpress.com/category/heisenbug/
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Using_Code_Coverage_to_Improve_the_Reliability_of_Embedded_Software_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Building_a_Flexible_and_Automated_Testing_Infrastructure_Using_VectorCAST_Manage_and_Jenkins_v2.0.pdf
https://www.vector.com/int/en/products/application-areas/testing/testing-trends/
https://www.vector.com/int/en/products/application-areas/testing/testing-trends/5-basic-building-blocks/
https://www.vector.com/int/en/
https://www.vector.com/int/en/
https://www.vector.com/int/en/
https://www.vector.com/int/en/products/products-a-z/
https://www.vector.com/int/en/products/application-areas/
https://www.vector.com/int/en/products/application-areas/testing/
https://www.vector.com/int/en/products/application-areas/testing/testing-trends/
https://www.vector.com/privacy/
https://www.vector.com/privacy/
https://www.vector.com/privacy/

